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V ABSTRACT

This technical report contains four short papers (or notes) on
topics in the theory of social choice and voting. The first two develop
results on majority rule with probabilistic voting. The last two develop

results on relative majority rule and the Borda count, respectively.
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L NOTES ON SOCIAL CHOICE AND VOTING*

by

Peter Coughlin
I. MULTIDIMENSIONAL MEDIAN RANDOM VOTER RESULTS##

. 1. Introduction

The first spatial models of economic policy formation through
elections (with unidimensional policy spaces) led to the basic median
voter result: When a society has single-peaked preferences, there is
a convergent equilibrium in pure strategies at the median (of the

distribution of voters' "ideal points") for two candidates who maximige

votes.
These first models were generalized for societies with multidi-

mensional policy spaces by Davis and Hinich [1966], [1967], [1968], and

[1971). They showed that, given certain restrictions on voter preferences,
; if particular requirements are satisfied by the distribution of these
preferences, then there is a convergent equilibrium in pure strategies

, - at the median. This provided the basic "multidimensional median voter

; results."”
Variations on these basic models have been developed and analyzed
) by both economic and political theorists (see Hinich [1977] for references).

The recent work of Comaner [1976], Hinich [1977], [1978] and Kramer [1978]

M

. This work was supported by Office of Naval Research Grant No.
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has been concerned with the implications of probabilistic voter choices.

This generalizes the basic models to include random, non-policy factors
in voting decisions.

Comaner [1976] and Hinich [1977] have shown that the one-dimensional
median voter result does not hold in general when there is probabilistic
voting. Kramer [1978] has subsequently argued that the one-dimensional
median voter result is robust when the levels of indeterminancy in voter
choices are small.

] : This paper shows (in Theorem 1) that, under conditions analogous

to those originally studied by Davis and Hinich, multidimensional

f median voter results hold. This is true for any level of indetermi-
I nancy in voter choices.
[ 2. Probabilistic Voting and Median Voter Results

The notation and assumptions here are based on Hinich [8].
3 X CR® will denote the society's set of alternatives (or policy

space). An individual voter will be designated by i. Each voter's

preferences will be summarized by a utility function, ui(e) = ui(e; xi),
on 6 € X, where Xy is an "ideal point" for individual i (i.e.
ui(xi) > ui(e), ¥ 8 € X). The two candidates will be designated by
j € {1,2}. OJ € X will denote a policy proposed by candidate J.
When considering a pair of proposals we will always order them as
(91,92).

The probability that individual i votes for candidate

when 6, and 92 are proposed is specified to be

(1) Pr{i votes for eJ} = Pi(log ui(ed; xi) - log ui(ak; xi))




for 3§, k € {1,2} and J # k. P, is assumed to be monotonically non-

decreasing and we assume that everyone votes. This strictly generalizes
: ) the deterministic voting assumption (viz., i votes for J if
ui(ej) > ui(ek)’ j, k€ {1,2}, 3 # k) of the basic spatial models.

We also assume that candidates act to maximize their expected

k ‘ votes.
A Davis and Hinich assumed that each individual i's utility
function is
(2) u,(8; x.) =X -6 - x 12
it i iAa(i)

] where A(i) is a symmetric, positive definite, (n x n) matrix, and

(3) 1o - xi|§<i) = (x -8+ A(1) + (x, - 8)

f(x) will be used to denote the density function which summarizes

the distribution of voters' ideal points.

Davis and Hinich's first assumption was:

Assumption DH.1l: There is some A such that A(i) = A for

every voter i and f(x) is multivariate normal.
Their second assumption was:

: Assumption DH.2: There is some u € R® such that, for each A,

f(xilA(i) = A) is multivariate normal with the common u. (I.e., u is a

: common mean (and median) for all the sub-distributions of voter ideal points).

(2) can be weakened to




o

(4) u (8) = 6, (10 = x 05 . ))

where Oi is concave. ¢c will denote a particular concave function

on R,. Additionally, we can weaken the assumption of a multivariate

normal density function to the assumption of "radial symmetry" (viz.,

there is some "median"™ u such that f(x) = £(2u - x) for every x € X).
Davis and Hinich have implicitly assumed that all voters have

the same probabilistic voting function Pi (viz., the deterministic

voting rule). We will let P denote a particular probabilistic voting

function which is measurable (almost everywhere) in x for any (61,92).
A voter can be completely characterized by his ideal point Xy

together with the triple h(i) = (A( i),¢i,Pi). Hence, the most natural

generalization of DH.2 to the above conditions is:

Assumption DH.3:V There is some U € Rn such that, for each h,

f(xilhi = h) is a discrete probability mass function or & continuous density
function which is radially symmetric aroumd the median p. (T.e., u is a

common median for all of the sub-distributions of voter ideal points.)

Theorem 1: Suppose that DH.3 is satisfied by a probabilistic
spatial voting model. Then (y,u) is an equilibrium in pure strategies

for the candidates.

Remark: This also clearly yields the earlier multidimensional
median voter results (with DH.1, DH.2 or the weakenings discussed above)

as corollaries wvhen there is deterministic voting.




Proof: Let EV1(61,62|h) denote the expected votes for candidate
1 from the citizens with h(i) equal to a particular h = (A,¢C,P). Ve

will prove Theorem 1 by showing that, for any specified h = (A,éc,P),

(5) EV,(8,,u|n) < EV,(u,uln) < EV, (u,8,[n), v, .0

1 €X

2
Partition X into {Xg,X;,X,} so that X ={u},x€X *2u -x€X
and both P and f(x|h) are measurable (almost everywhere) in x on

X, and X,. We will also let U(6; x) denote log ¢c(|e -xli). Then,

t~ o

[ P(U(eys x)- Ulu; x)) » £(x|n) + ax

0 Xk

(6)  EV.(6,,u|n) =
1'71 X

If f(x|h) 1is continuous, then the first term in (6) equals
zero. If f(x|h) is discrete, then, since P is monotonically non-

decreasing, the first term satisfies

(1) PU(e5u) - UG; ) « £a]n) < PO « £ ln) = 3+ £6|n)

for every 6., € X.

1
Consider any x € Xl and the corresponding 2

2y =-x€ X2.
We have |6 - zIA = |z - 9IA =x+z-08- xIA. Therefore, U(6; z) =
log ¢c(|9 - zlA) = log ¢c(|2u -0 - xIA) = U(2u - 8; x). Consequently,

the last two terms of (6) sum to

(8)  Ty(ey,u) = I,&[P(U(el; x) - Ul; x)) + P(U(2u - 8,5 x) -

- Ulu; x))] ¢ £(x|n) « ax

2




-6-

Now, since everyone votes, (1) implies

' (9) P(U(8; x) - Ul; x)) + P(UL; x) - U(8; x)) =1

2
A(d

functions, U(8) is concave. Therefore, U(u; x) > 1/20(8; x) + 1/2 U(2u - 05 x).

Additionally, since J6 - xiu )’ ¢i(-) and log () are concave

} So 2 - Ul; x) > U(e; x) + U(2u - 8; x). So,
(10)  Ul; x) ~U(2n -85 x) > U(B; x) - U(B; x) .
Hence, since P is monotonically non-decreasing,
P(U(u; x) - U(2u - 83 x)) > P(U(6; x) -UQ; x))
by (10). Therefore, letting 6 = 2y - 91 in (9), we obtain

P(U(el; x) - UQ; x)) + P(U(2u - 8,3 x) - Uls x)) <1

Consequently, (8) implies

(11)  T,(e ,u) ¢ j’xlf(xlh) . dx = %{fxlf(xlh) . dx + jx2f(x|h) . ax]

Finally, (9) implies EV(u,u|h) = 1/2. Therefore, by (7) and (11),
1
EV, (6 ,u[h) < EV.(uufn) =5 , Ve, €X
A similar argument establishes

, Ve_EX . Q.E.D.

N [

Evl(u,eglh) > Evl(u,ulh) =




3. Conclusion

It should be observed that (as in all of the papers on multidimen-
sional median voter results) the conditions which have been shown here
to be sufficient for the existence of a global electoral equilibrium at

the median are very restrictive and can hardly be expected to be satisfied

in most empirical situations. Additionally, it is easy to show, by example,
that similar conditions which are analogous to sufficient conditions for
multidimensional median voter results which have been developed elsewhere

do not guarantee such results when voting is probabilistic. Finally, since
the purpose of this paper is to show that the multidimensional median voter
results of Davis and Hinich hold under analogous conditions in probabilistic
spatial voting models, it still leaves open the possibility that there are
electoral equilibria elsewhere in the policy space under other conditions-—-

for instance, even when the distribution of preferences is not symmetric.
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IT. PARETO OPTIMALITY OF ELECTORAL TRAJECTORIES
IN PROBABILISTIC VOTING MODELS*

1. Introduction

Public choice theorists have long been interested in whether
outcomes from majority rule and electoral decision processes are
Pareto optimal or not (e.g., Cohen [1979], Kramer [1977], McKelvey
[1979], Ordeshook [1971), and Wittman [1977]). Most of the existing
literature on this question has been concerned with societies in which
each individual always votes for the candidate whose proposed policy
has the greatest utility for that individual. However, public choice
theorists have also been interested in electorates where there is a
positive probability that a citizen, drawn from a collection of indivi-
duals with a common utility function or ideal point, will vote against
the candidate whose proposed policy has the greatest utility for him or
will abstain. This formulation incorporates indifference, alienation
and non-policy factors into voter decisions.

Electoral equilibria have been shown to exist in societies with
the first type of electcrate only when special symmetry assumptions
are satisfied. Similarly, electoral equilibria have been shown to
exist in societies with the second type of electorate only when special
symmmetry or concavity assumptions have been made (e.g., Denzau and Kats

[1977], Hinich, lLedyard and Ordeshook [1972], [1973] and Hinich and

»
I would like to acknowledge helpful comments and suggestions from Ken
Arrow, Gene Mumy, Shmuel Nitzan, Kotaro Suzumura and an anonymous referee.
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Ordeshook [1971]). However, these special assumptions have been }‘
criticized for being unduly restrictive. As a result, the outcomes ‘
from sequences of social decision processes have subsequently been studied
(rather than static equilibria). !
This paper considers the Pareto optimality properties of electoral
outcomes from sequences of elections in societies with the second type
of electorate (without any symmetry or concavity assumptions). It shows Z%
that, if challengers maximize their expected pluralities or their expected

votes, then the sequence of electoral choices will be in the Pareto set

Sagros

within one step, and will remain in that set ever after. This is the

S e

opposite of the established Pareto non-optimality of basic majority
rule trajectories for electorates of the first type (e.g., Cohen [1979],

McKelvey [1979]). It is also stronger than the Pareto optimality pro-

S

perties of electoral trajectories for these electorates (e.g., Kramer

[1977] and Wittman [1977]).

2. Dynamical Probabilistic Voting Models

LSS bezocad

An electorate is

(1) a set, S, of feasible social alternatives,
(2) an index set A such that for each o € A there is an

associated utility function Ua: S~ R+; i

(3) a probability measure space (A,A,u). I
This formulation ineludes both finite and continuous populations as special
cases, of course. !
i
i
‘ — - ———— -
' . \

- o ———
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A two-candidate contest with probabilistic voting is
(1) an electorate
(2) two candidates indexed by i €C = {1,2}.
(3) a function for each i € c, Pi: s x s> [o0,1].
We will use ei to denote a policy proposed by candidate i1 € C, and
the ordered pair (61,02) to represent a pair of policies proposed by
the two candidates. Pi(el,ez) denotes the probability that an individual
randomly drawn from the collection of individuals indexed by & will

vote for candidate i when 91 and © are proposed.

2
Hinich, Ledyard and Ordeshook [1973] discussed the behavioral
heuristics which should be expressed in assumptions about voters' choices.

Aggregate assumptions which correspond to their formalizations of these

heuristics are:

Assumption 1: For i € C, P; is a strictly monotone incresasing

function of U (0.).
(AR ]

Assumption 2: For i € C, P; is a monotone decreasing function

of U&(GJ) for JE€C, J#i.

Assumption 1 does exclude certain models with deterministic voting
where the P; move in steps from 0 to 1/2 to 1 (e.g., the basic assumptions
in Kramer [19771]). However, it could be satisfied if everyone votes deter-
ministically, but for each a there is a continuous distribution of

utility differences at which the individuals switch their votes. It will
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also be satisfied if most citizens vote deterministically, but for .
each a there is at least one individual who votes probabilistically

(and satisfies the corresponding assumption in Hinich, Ledyard and

Ordeshook [1973]). Assumptions 1 and 2 merely express the idea that voters'

behavior should be minimally responsive to changes in proposals which

would lead to changes in voters' utilities. This response need be nothing

more than a change in the likelihoods of abstentions.
Kramer [1977] has developed a dynamical model for studying sequences
of elections. The analogous dynamical process of policy formation here
is as follows. Let the society be at any feasible status quo, s € S,
with some incumbent in office. In each election, the challenger proposes
a feasible alternative and the incumbent must defend the status quo. The
winner's proposal then becomes the status quo. Any sequence (SJ), where
s is selected by a challenger against

3 %y-1

of policies which can occur. It should be observed that the sequence

, is an electoral trajectory

is not indexed by time (unlike Kramer [1977]) since the number of times
an incumbent wins is randomly determined.
Candidates could be concerned with maximizing their expected votes,

their expected pluralities or their probabilities of winning. However,

[

s

Hinich [1977] has shown that the last two are equivalent when there is a

large population. Therefore, only the first two will be considered here.
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3. One-Step Pareto Optimality

The Pareto relation R is defined by (x.y) € R “'Ua(x) > U (y) a.e.

in A. An alternative x €S is in the Pareto set means V y € S: (y,x) €R

or (x,y) € R. The strong Pareto relation R

g 18 defined by (x,y) € R «

(x,y) €ER and [3 A €A u(Al) >0 and Ug(x) > Uy(y) a.e. in Al].
An alternative x € S 1is in the strong Pareto set means Y y € S: (y,x) ¢ Rs.
Of course, if x 1is in the strong Pareto set it is also in the Pareto set.

These definitions are from Hildenbrand [1969] and [197L4].

Theorem: Let SO be any initial policy. If there is a sequence

of two-candidate contests with probabilistic voting which satisfies Assump-

tions 1 and 2 and challengers maximize their expected votes or their expected

pluralities, then any St, t=1,2,..., in any electoral trajectory is in

the strong Pareto set.

Proof: Suppose, without any loss of generality, that candidate 2

is the incumbent and the status quo is s Then the expected votes

Se-1°

which the candidates get at the possible proposals of candidate 1 are

given by

P (8_,8 )« au(a) for 1 €cC

EV; (0148, 1) = 1{ a'P18 1

Suppose that S¢ is not in the strong Pareto set. Then 3Jy €S: (y,st) € Rs.

Therefore, U (y) > U (s ) a.e. in A and 3JA €A:u(A))> 0 and

1
Ua(y) > Uc(st) a.e. in A . Therefore, by Assumption 1, Pu(y’st-l) >

pey TP RO " . L o .




1, . 1 1
P“(.. 5 ) a.e. in A and Pﬂ(y.s?_1)>Pu(st.s ) m.e. in

The:efore,

5 1 -
EV. (v,s Y= [P (y,s, ) ¢ dula) ¢ I P (s ,3 ) » dpla)
i t-1 a t-1 t t-1
A A\A
1 1
(1) N f L. Ce dulay ¢ [ ey s Ve du'a !
Vil e _ . \_ Y -1
AV a 1 t | A\A' 1 L M
= EVl( ¢ ?-ll \

i.e., candidate 1 1id not maximize his expected votes.

The expected 3 luralities which candidate | could et are given ty

PR 'S = 3 Y - EV 5 . N 3 ion o lies nl

EP 1(81 bt-l) Evl(el'bt—l F\‘)(el, t.-l) Now, Assumptior implies ,

ol b

: o vn ) . e EV (v .- S . i

Pa(y'st—l) < Pa( Y a.. in A. Hence F\'.’w"t-l) < EV ( t'st-l) ‘
l

Therefore, by (1),

"
)
<3

<

[ad

<

BER Ly ) = BV v e B

o - . 3
BPECC

.e., candidate 1 did not maximize his oxjected plurality. Q.E.D. 1
1
| !
Remark 1: In the rase of a finite electorate, Assumptions | and °
imply that l'-‘,Vl and F‘Pl1 are functions of 111(91),...,Un(61) and [

1

are strictly increasing in each of theze arvuments. [.c., for any St 1’

EVJ and FP "l are Bergson-Samuelson Social Welfare functions whose optima

are well known to be Pareto optimal.
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Remark 2: If we relax Assumption 1 to non-strict monotonicity
(as in Denzau and Kats [197T]), then the standard deterministic voting
models are included. It is therefore easy to show, by example, that there
is not an analogous theorem with the same strong Pareto optimality property

for this case.

The Pareto optimality properties established in this theorem are
stronger than those in Kramer '1977) since in his framework (1) from any
status quo which is not Fareto optimal, every subsequent social choice
is closer t¢ the Pareto optimal set, but every choice could be outside of
this set or the society may take a large finite number of steps to reach
this set, and (ii) a Pareto optimal alternative may be replaced by one
which i: not Pareto optimal.

Wh.ie strong Fareto optimality properties have been established here,
it zhould pe remarked that in most of these models the Pareto set is often
jalte larpe. Therefore, 1t should also be remarked that the theorem in
thio jAper 15 not v direct extension of Kramer's main results. Finally,
since thic paper has been concerned with the Pareto optimality properties
af *he electoral tralectories defined in Section 2, {t still leaves open

the question: ! whether they converge to a small subset of the strong Fareto

set and whether they have further optimality properties.

"y P
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' Conclusion

This paper has answered the question of whether electoral outcomes
from sequences of elections are Pareto optimal when Assumptions 1 and 2
are satisfied and challengers maximize their expected votes or their expected
pluralities. Its most important point is the answer that the social choices

move into the strong Pareto set within one step--never to leave again.
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IIXI. NECFSSARY AND SUFFICIENT CONDITIONS FOR
§-RELATIVE MAJORITY VOTING EQUILIBRIA¥

Greenberg [1979] recently provided necessary and sufficient conditions
on absolute majority rules for the existence of a voting equilibrium for
every possible profile in a society (Theorems 1 and 2). He then provided
a sufficient condition for the existence of a relative majority voting equilib-
rium for all possible profiles in a society (Theorem 3) and showed that this
condition is necessary when there is exactly one more citizen than dimen-
sion in the policy space {Theorem 4). This led him to conclude that "no
bound...lower than (the given sufficient conditions) will, in general,
assure the existence of a 8-relative equilibrium" (p. 632).

The theorem below provides the necessary and sufficient condition
which the relative majority rule must satisfy for the existence of a d-rela-
tive majority voting equilibrium for every possible profile in a society.
This bound is derived from Greenberg's first two theorems (under the exact
assumptions used in his results on S-relative equilibria).

This theorem shows that the sufficient bound in Greenberg [1979] is,
in fact, not necessary in most societies with "large" populations (i.e.
where the number of citizens exceeds the n'imber of dimensions in the society's
policy space). It also specifies which of these societies do have Greenberg's
sufficient conditions as a necessary condition. This theorem also implies

that Greenberg's sufficient condition is necessary when the number of

»
I would like to acknowledge helpful comments and suggestions from
Jerry Green, Ken Arrow and an anonymous referee.
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citizens does not exceed the number of dimensions in the policy space by
more than one. Finally, Theorems 3 and 4 in Greenberg [1979] follow as
corollaries of this theorem.
The reader is referred to Greenberg [1979] for notation and defi-
nitions.
., The following assumptions were used in Greenberg's results on
S-relative equilibria:
(A) X is a nonempty, compact and convex subset of Rm of dimen-
sion m, and
(B) for each i € N, there is a continuous, strictly quasi-concave
utility function defined over X.
We will additionally use [a] to denote the greatest integer <a

and {al to mean the smallest integer > a.

Theorem: Suppose that a society's alternative space satisfies (A).
Then there exists a §-relative equilibrium for every profile which satisfies
(B) if and only if

[(m e+ n)/( 1
(1) I VICEE

Proof: First, by Theorems 1 and 2 in Greenberg [1979], there exists

a d-majority equilibrium for every profile if and only if

(2) a> —2—.n .




=20-

Second, by definition, a profile has a §-relative majority equilib-
rium if and only if Jx € X such that p(x,y) < § « p(x,¥), Vy
or equivalently, p(x,y) » (1 +68) < & *(n - i(x,y)), V y. Hence, a parti-
cular profile has a §-relative majority equilibrium if and only if there

is some x € X such that

(3) p(x,y) € 3 f g (h-ilxy)) » Vy

We will now show that there exists a §-relative majority equilibrium

if and only if

(4)

m
Tvs 02 lgsy o0l

First, "if." Assume 6/(1 + 8) ¢ n >{mn/{(m + 1) *n)). Then, since
p(x,y) 1is an integer, (2) implies that for each profile there is a d-

equilibrium x (for some 4 =(m/{({m+ 1) *n) + e, € >0) which satisfies

(5) p(x,y) < [ “n , Vy

m .
m+1
We will show that, for each profile, this d-equilibrium is also a §-relative
equilibrium. Suppose not. Then there is a profile for which x has
p(x,y) >(8/(1+ 8)) * (n - i(x,y) for some y €X (by (3)). Define
z = 1/2(x) + 1/2(y). Then, since the individuals' utility functions are
strictly quasi-concave, p(x,z) = p(x,y) + i(x,y). Therefore, p(x,z)

>(8/(1 + 8) «(n - i(x,y)) + i(x,y) =@ /(1 +8)) » n+ (1/(1 +8) - i(x,y).




But, since & > 0 and i(x,y) > 0, this contradicts (5).

Now, "only if." Assume there is a §-relative majority equilibrium
for every profile. Then, for each profile, there is an x € X such that
p(x,y) < ((8/(1 + 68)) » n) - ((8/(1 + 8)) « i(x,y)), Vy.

Therefore, for each profile there is an x € X such that
p(x,y) < 6/(1 +8) * n, Vy. bdut, by (2), this occurs only if (&/(1 + §))
*n< [m/(m+1) - n].

The theorem now follows directly from (4) by using the equality

*nl+ {55t =n

[

m+ 1
Q.E.D.

Remark: This theorem implies the following. If n >m+ 1, then
§ >m is a necessary and sufficient condition for the existence of a
S-relative equilibrium for all profiles satisfying (B) if and only if
n=k e+ ((m+ 1)/m) for some integer k. Otherwise some & < m are
sufficient. If m + 1 >n, then 8§ >n -1 1is a necessary and sufficient
condition. Finally, Theorems 3 and 4 in Greenberg [1979] follow directly

from this result.
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IV. A DIRECT CHARACTERIZATION OF BLACK'S FIRST BORDA COUNT#*

i The Borda rule has been studied as a possible method for

aggregating individual preferences (e.g., see the references). Black
[1976], in particular, has proven an important theorem which provides
a Justification and interpretation of the Borda count in terms of a
majority rule. This note shows that an equivalent theorem can be
proven directly with his Method I (which he has neglected because "it
is clumsier and needs much more labour") by using two characteristic
functions. We first recall the notation of Black and then prove our
assertion. The note closes by obtaining Black's original theorem as
a corollary and giving an alternative "closeness to unanimity" inter-
pretation.

Let N = {1,...,n} be a finite set of individuals and A = {al,...,am}
a finite set of alternatives. Let Ri CA x A denote a preference ordering
on A for individual i, with Pi and Ii the asymmetric (strict prefer-
ence) and symmetric (indifference) parts of Ri' #S will denote the
cardinality of the set 8.

The Borda count for a particular a €A 1is defined as follows. !

Let r, = #{ak € A[(ah,ak)e Pi} and s; = #{ak € Al(ah,ak)e I.}. Then

<y . ' = - . '
i's Borda count for a, is Bi(ah) r, + 1/2(si 1) (as in Black's

Method I), and Black's first Borda count for a is B'(s ) = ] Bi(a ).
ien

*
I would like to thank Kotaro Suzumura for suggesting this problem to me.




is a Borda choice (i.e., is in the Borda choice

An alternative

set) iff B'(a,K) > B'(a.h) for all a € A.

Phk

Black also defined a fraction for use in a majority rule.

= #{i GNl(a.h,a.k) €P.} and t = #{i EN’(a.h,ak) €1.}. Then

Black's majority rule fraction is

+1/2 « thk)/n. The

mean fraction of votes for

is given by

vhere A = A\{ah}.

We will additionally define two characteristic functions for a

specified ah € A:

and

(3)

s, =
1

ir (a,a) €P,

otherwise

ol

if (a.h,ak) €1,

otherwise

Using this alternative notation,

) Xp(ak,i) and

Gd  bad b

%ﬂfl(ak,ik Therefore,
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(1) B(a)= 5| T xo(a.i)+te (T [x( ,1)]-1>] :
! iév[akaxpak 2"
We also could have introduced the alternative definitions:

Py = .X xP(ak,i) and t,. = ‘X XI(ak,i). We then have, by (1),
ieN ieN

(5) Fla, ) = [ (o, ,1) + 2+ ¥ x_(a,1)]/
! Lelmet) v 5 L x(ae1]/

m-1 ’ I
Using these alternative definitions we can directly prove:
Theorem: For any a, € A, B'(ah) =n-° {(m-1) * F(ah).

Proof: By (5),

1 . 1 :
F(ah) = m-1) *n * akéhhién[xp(ak’l) + 5" xI(ak’l)]
By (),
Br(a) = [ ] [xpla.i)+ 3« xg(a,1)]

ieN akekh

since by (3), XI(ah,i) =1 and xP(ah,i) = 0 for every i.

Therefore , B'(ah) =(m=-1) * n F(ah). Q.E.D.

Black's second Borda count for a, was
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(6) B%%)=éJﬂ%eAn%ﬂQEPg_#ukeﬂuw%>e%n

Corollary [Black's Theorem ({1976], p. 9)]: For any a €a,

Ba ) =2+ n- (n-1)+ (Fla) ~1/2).

Proof: Black ([1976], p. 6) showed: B2(ah) =2 . B'(ah) -n-¢* (m-1).

Q.E.D.

Finally, unanimous support for a, against any other proposal

gives F(ah) 1 and unanimous support against ah for every other proposal

fl

gives F(ah) 0. Therefore, F(ah) gives a measure of "closeness to
unanimity" which differs computationally from the one proposed by Farkas

and Nitzan [1979]. The conclusion is the same:

Corollary: Let F(ah) messure "closeness to unanimity." Then

akGEA is the proposal which is closest to unanimity.

Proof: By our theorem, "closeness to unanimity" (i.e., F(ah)) is

a positive linear function of B'(ah). Q.E.D.
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